Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control.

نویسندگان

  • Guoming Huang
  • Hui Li
  • Jiahe Chen
  • Zhenghuan Zhao
  • Lijiao Yang
  • Xiaoqin Chi
  • Zhong Chen
  • Xiaomin Wang
  • Jinhao Gao
چکیده

In this paper, we demonstrate the tunable T1 and T2 contrast abilities of engineered iron oxide nanoparticles with high performance for liver contrast-enhanced magnetic resonance imaging (MRI) in mice. To enhance the diagnostic accuracy of MRI, large numbers of contrast agents with T1 or T2 contrast ability have been widely explored. The comprehensive investigation of high-performance MRI contrast agents with controllable T1 and T2 contrast abilities is of high importance in the field of molecular imaging. In this study, we synthesized uniform manganese-doped iron oxide (MnIO) nanoparticles with controllable size from 5 to 12 nm and comprehensively investigated their MRI contrast abilities. We revealed that the MRI contrast effects of MnIO nanoparticles are highly size-dependent. By controlling the size of MnIO nanoparticles, we can achieve T1-dominated, T2-dominated, and T1-T2 dual-mode MRI contrast agents with much higher contrast enhancement than the corresponding conventional iron oxide nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects.

Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly incre...

متن کامل

Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

Objective(s):Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic si...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model.

Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement ef...

متن کامل

Synthesis and evaluation of chitosan manganese-ferrite nanoparticles as MRI contrast agent

Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 17  شماره 

صفحات  -

تاریخ انتشار 2014